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Abstract: A genetic algorithms (GA) based strategy is described for the identification or optimization of active
leads. This approach does not require the synthesis and evaluation of huge libraries. Instead it involves iterative
generations of smaller sample sets, which are assayed, and the “experimentally” determined biological response is
used as an input for GA to rapidly find better leads. The GA described here has been applied to the identification
of potent and selective stromelysin substrates from a combinatorial-based population of 206 or 64 000 000 possible
hexapeptides. Using GA, we have synthesized less then 300 unique immobilized peptides in a total of five generations
to achieve this end. The results show that each successive generation provided better and unique substrates. An
additional strategy of utilizing the knowledge gained in each generation in a spin-off SAR activity is described here.
Sequences from the first generations were evaluated for stromelysin and collagenase activity to identify stromelysin-
selective substrates. GlyProSerThr-TyrThr with Tyr as the P1′ residue is such an example. A number of peptides
replacing Tyr with unusual monomers were synthesized and evaluated as stromelysin substrates. This led to the
identification of Ser(OBn) as the best and most selective P1′ residue for stromelysin.

Introduction

Recently, combinatorial/multiple synthesis of both oligomeric
and non-oligomeric libraries of diverse compounds and high-
throughput screening have provided a format for the identifica-
tion of new lead compounds for various molecular targets.1

However, in any given template, the number of possible
compounds one can synthesize in combinatorial or permuta-
tional2 libraries is enormous, often in the millions.1 Typically,

one prepares libraries containing 104-106 compounds per
template, assays these in a number of diverse screens, and
subsequently identifies activess“hits”. High-throughput screen-
ing for a large number of targets is essential for success with
this format. There have been a few attempts to evaluate the
molecular diversity contained in a given library prior to
synthesis.3 The motivation of this diversity assessment approach
is to select a subpopulation which maximizes dissimilarity4

among the selected members. The synthesis and biological
evaluation of this subpopulation rather then the entire library is
a more manageable task. One of the important goals in
combinatorial/multiple synthesis is to build high-fidelity librar-
ies, which ensures greater probability of obtaining hits for a
giVen biological target.5 An approach to accomplish this
objective would be to synthesize diverse compounds in smaller
sets (say, in the low hundreds at a time) and utilize the biological
response to guide the selection of compounds6 for successive
synthesis and biological evaluation (Scheme 1). Recently,
genetic algorithms have been successfully utilized to find
solutions to a number of complex problems.7-9 In fact, genetic
algorithms (GA) are distinguished for their powerful optimiza-
tion characteristics, enabling them to find a set of very good
(but not necessarily the best) solutions rapidly where an
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(1) For an excellent review see: (a) Gallop, M. A.; Barrett, R. W.; Dower,

W. J.; Fodor, S. P. A.; Gordon, E. M.J. Med. Chem. 1994, 37, 1233-
1251. (b) Gordon, E. M.; Barrett, R. W.; Dower, W. J.; Fodor, S. P. A.;
Gallop, M. A. J. Med. Chem. 1994, 37, 1385-1401 and references cited
therein.

(2) Pirrung, M. C.Chemtracts: Org. Chem. 1994, 7, 184-186.
(3) Martin, E. J.; Blaney, J. M.; Siani, M. A.; Spellmeyer, D. C.; Wong,

A. K.; Moose, W. H.J. Med. Chem. 1995, 38, 1431-1436.
(4) See ref 3 for indices used to represent dissimilarity.
(5) There is tremendous effort in producing and screening chemically

diverse compound libraries. However, the real interest for the pharmaceuti-
cal industry is the biological diversity that is embodied in it, i.e.biodiversity
not necessarilychemodiversity.

(6) This approach would not require explicit description of a set of
indices, but instead, the selection of indices would be implicit in this type
of optimization approach.

(7) For general references for genetic algorithms see: (a) Holland, J. H.
Sci. Am. 1992, 66. (b) Forrest, S.Science1993, 261, 872-878.
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astronomically larger number of potential possibilities exists.
Even though there have been numerous10 applications of GA,
to the best of our knowledge, there is no example of an
application of GA to guide chemical synthesis for structure
optimization for any class of compounds. In this paper, we
report the first application of GA-guided chemical synthesis.
Our principle criteria for the choice of a test case to explore
the usefulness of GA to guide chemical synthesis was to choose
a template for which chemical synthesis has been well estab-
lished, so that we could evaluate GA’s impact to find “hits”
without confounding it with synthesis-related issues. Therefore,
a peptide-based template was our first logical choice. Recently,
we have reported the screening of immobilized peptide libraries
as a tool for the determination of substrate specificity and
selectivity for proteases.11 We reasoned that selection (and
optimization) of hexapeptides consisting of 20 amino acids,12

representing 206 (64 000 000) possible structures, possessed all
of the essential ingredients to be a good initial area in which to
test the concept. The number of possibilities in the entire library
was very large. The synthesis of these peptides had been
previously worked out.11 A validated assay was in hand and
available.11

Methods

Genetic Algorithms. In this section, we will describe the basic
ideas of the GA method, some issues involved in its use as a tool for
the selection and representation of chemical structures, and finally the
details of our implementation.
GA optimization methods are based on several strategies from

Darwinian theories of evolution. In the normal survival and evolution
of the species, new genetic mutants constantly arise and their survival
and “dominance” is based on their ability to find food, reproduce, and
resist “assault” on their existence. These would be classified in the
language of genetic algorithms as the “objective” function which is
being optimized. In the same way, if our living mutating population
was made up of hexapeptides instead of species of organisms and the
evolutionary pressure being applied (the biological function) was the
biological activity, then one could envisage exactly the same process
occurring. The GA we use here is based on three basic strategies:13

selection, crossoVer, and mutation. The first of these strategies,
selection, is the use of a breeding population in which the individuals

who are more “fit” in some sense (higher biological response in this
application) have a higher chance of producing offspring and passing
on their “genetic” information. The second strategy is the use of
crossoVer14 (mating) in which a child’s genetic material is a mixture
of his or her parents’. The final strategy is that ofmutation, where the
genetic material is occasionally “corrupted” to maintain a certain level
of spontaneous and random genetic mutation in the population.
The GA paradigm used here employed a modified version of the

Genesis GA15 code and is outlined above in Scheme 2. We work with
a population of individuals which interact through their genetic operators
to carry out an optimization process. An individual is specified by a
chromosome, a bit string in this case. Let us assume that a hexapeptide
is to be represented by a bit string (i.e., a sequence of 1’s and 0’s) of
30 bits (or digits). Each amino acid is then represented by five bits:
the first amino acid being coded into bits 1-5, the second being coded
into 2-10, etc. Each five-bit code can essentially code for 25 or 30
unique amino acids. Since there are only 20 amino acids, this five-bit
codon can easily accommodate a unique pattern for each amino acid.16

Therefore, the 30-bit string can be translated into a unique hexapeptide
(and vice versa). A fitness function, also called the objective function
(see above), is used to rank the individual’s chromosome. The
optimization proceeds because the population produces individuals that
have increasingly higher fitness. Initially, a set ofNpop individuals is
formed by choosing a set ofNb-bit strings at random and each member
is synthesized and evaluated for fitness. A roulette wheel is conceptu-
ally created where the “slice” on the wheel for any given individual is
proportional to the value, for that individual, for its fitness. Biologically
more active peptides in our implementation get a large slice in the
wheel and inactive peptides get a small slice. In the selection process
one may imagine mating pairs to be selected by spinning this wheel.
(Note: ALL individuals have a place on the wheel and therefore have
a finite chance to be selected). This produces a list of pairs for mating.
Subsequent generations are formed as follows: each member of the

first generation17 is ranked by fitness, and the fittest individual is placed
into the next generation with no change. Next, pairs of individuals
(from the selection step above) are crossed-over to form the next
generation. The crossover step may be visualized as follows (although

(8) (a) Wagener, M.; Gasteiger, J.Angew. Chem., Int. Ed. Engl. 1994,
33, 1189-92. (b) Walters, D. E.; Hinds, R. M.J. Med. Chem. 1994, 37,
2527-2536. (c) Wehrens, R.; Lucasius, C.; Buyden, L.; Kateman, G.Anal.
Chim. Acta1993, 277, 313-324. (d) See ref 9 in ref 6a (listed above) for
use of genetic algorithms for jet engine design.

(9) (a) Judson, R. S.; Jaeger, E. P.; Treasurywala, A. M.; Peterson, M.
L. J. Comput. Chem. 1993, 14, 1407-1414. (b) Judson, R. S.; Jaeger, E.
P.; Treasurywala, A. M.J. Mol. Struct. (THEOCHEM)1994, 308, 191-
206.

(10) See refs 10-16 in ref 8a above.
(11) Singh, J.; Allen, M. A.; Ator, M. A.; Gainor, J. A.; Whipple, D.

A.; Soloweij, J. E.; Treasurywala, A. M.; Morgan, B. A.; Gordon, T. D.;
Upson, D. A.J. Med. Chem. 1995, 38, 217-219.

(12) We use all 20 coded amino acids (see a complete list under
Abbreviations), except Cys. We employS-methylcysteine (Smc, denoted
by the single letter code U) as the 20th amino acid.

(13) We do not use deletion and insertion as we do not want to change
the overall size of the chromosome and, therefore, overall length of the bit
strings.

(14) Crossover is the single most important aspect which provides for
most optimum assurance to explore the gene population for selecting a set
of more fit members.

(15) In a true sense this random generation should be referred to as
generation 0 (zero) as far as GA’s are concerned, since there are no fitness
functions which need to be evaluated by GA to provide the initial population
of members.

(16) Genesis version 1.2 from ftp site: ftp.aic.nrl.navy.mil.

Scheme 1.Biology-Guided Lead Identification Paradigma

a Arrows represent input of biological data for generation Gen(i) to
guide selection of compounds for generation Gen(i+1) (see text for
details).

Scheme 2.Summary of Variables Used for Genetic
Algorithms
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some of the actual details of the implementation are slightly different
for technical reasons). The genome for each individual is of fixed
length (in our case 30 bits). One can envision linking up the genomes
for the two members of a mating pairs and then ARBITRARILY
making a “cut” at a randomly chosen spot in both of the genomes.
Recombining the first part of the first genome with the second part of
the second and vice versa generates two “new” offspring individuals.
This entire process is called crossover step. It is important that the
total number of individualsNpop selected for the subsequent generations
remain identical to the initial random population, since each pair of
parents produce exactly two offspring. After applying the selection
and crossover steps as outlined above and thus producing a population
of “new” individuals for the next generation, the mutation operator is
applied. This simply consists in our case of “flipping” a bit (from 0 to
1 or vice versa). The frequency of this mutation is preset and constant
throughout the run. The choice of which individual to mutate and which
bit in that individuals’ genome to mutate is purely random.
Chemistry. As stated earlier, we have selected a problem of protease

substrate specificity and selectivity determination as a test case to
evaluate the suitability and usefulness of GA in this area. A hexapeptide
could be represented by the generic formula18 X1X2X3X4X5X6. Early
input into the makeup of the starting population for these study was
based on the previously known result that proline in position 2 of a
hexapeptide increased its chance of being a substrate of the target
enzyme stromelysin.11 It is normal when designing an assault on any
biological target to use as much information as is available. Thus it
was felt that fixing X2 ) proline for the selection of the initial “random”
population set of 60 hexapeptides was a reasonable approach to biasing
toward an early convergence. If this choice was not made, we reasoned
that the initial population would probably all be inactive and no
reasonable selection criteria could then be applied. It is however
important to point out that this constraint was applied ONLY to the
initial choice. Subsequent generations were free to chose non-proline
amino acids for position 2. The initial random population was selected
from a possible of 205 (3 200 000) possible hexapeptides (represented
by X1PX3X4X5X6). However, the X2 ) Pro constraint was not imposed
on subsequent generations. The peptides were synthesized using
controlled-pore glass as a solid support as described previously.19

Controlled-pore glass (CPG) containing an ((aminopropyl)silyl)oxy
(AMP) handle was exhaustively coupled with FMOC-â-alanine (â-
Ala) followed by couplings with FMOC-ε-aminocaproic acid (Acp)
using a 10-fold excess of preformed HOBt active esters inN-
methylpyrrolidone. A 200 g sample of CPG containing a homogeneous
population of linker [(Acp)5-âAla] was prepared. The homogeneity
of FMOC-(Acp)5-âAla-CPG bulk sample was verified at each step of
the coupling reaction by triplicate amino acid analysis usingâAla as
an internal standard. This sample was subsequently used for the
preparation of the required peptides for any given generation. A
standard protocol of triple coupling with a 10-fold excess of FMOC
amino acid HOBt active esters (in situ activation method) was utilized
for automated synthesis employing an Advanced ChemTech synthesizer
model MPS 350. Finally, each peptide was reacted with FMOC
alanine20a followed by capping with coumarinpropanoic acid (COP) as
a fluorescent tag.20b A glass-bound peptide sample21 used for biological
assays could be generically represented as COP-A-X1X2X3X4X5X6-

(Acp)5-âAla-AMP-CPG, whereXi (i ) 1-6) represents one of the 20
possible amino acids (see Abbreviations for the list of amino acids
used).

Biological Assays. Automated biological assays were performed
on a small sample of the glass-bound peptides in a 96-well format.
Typically, 4.0( 0.3 mg of 62 glass-bound peptides were weighed22 in
individual tubes using the HP ORCA robot and 220µL of a buffer
(containing 50 mM Tris (pH 7.5), 200 mM NaCl, and 10 mM CaCl2)
followed by 44µL of the protease solution (20 nM mSl-t or 10 nM
mCl-t)23 was added using a Packard PROBE. Samples were mixed on
a variable speed vortexer for 120 min. The substrate was allowed to
settle by gravity, a 125µL aliquot of each sample was transferred to
the appropriate position of a 96-well plate, and fluorescence was read
using a fluorescence plate reader.

The stromelysin construct utilized has some autocatalytic activity.
The positive control sample (GPLAMF) and a negative control sample
(hexa-D-alanyl) were synthesized and evaluated as part of each
generation. The assay results for these samples were used as an
indication of the validity of the assay and to account for variance in
stromelysin activity due to autocatalysis. The negative control samples
typically produced very low fluorescence (<200) in the supernatant.
The observed (raw) fluorescence for the positive control samples for
generations Gen-1 to Gen-5 were 8652, 2959, 12 095, 15 242, and
13 044, respectively. The value for Gen-2 indicated the effect of the
autocatalytic activity of this enzyme construct. In order to minimize
the impact of the enzyme autocatalytic activity on the assays, we
prepared a fresh sample of the stromelysin for each assay, by appropriate
dilution of a bulk stock solution, just prior to assays. The fluorescence
values for positive control samples for Gen-3 to Gen-5 screening
supports this. We have recently reported an excellent correlation (r2

) 0.994) between the relativekcat/Km ratio for soluble peptides and the
relative substrate activity of corresponding immobilized peptides.11 This
correlation demonstrates that the kinetics of hydrolysis of immobilized
peptides are predictive of the reaction of their soluble counterparts,
validating the use of immobilized peptides for high-throughput screen-
ing.

Identification of Active Samples. Once the active samples
(fluorescence value greater than control) were selected, the identity of
these samples was validated by duplicate amino acid analysis. Next,
a portion of thepost-enzymologyglass-bound sample was subjected to
Edman microsequencing to identify the site of processing. A sample
of the corresponding supernatant was used to obtain amino acid and
mass spectral24 analyses to identify the structure of the soluble fragment.
The latter confirms the identity of the sample and the site(s) of
processing by the protease. The assay format and approach for the
identification of active sequence(s) are summarized in Scheme 3.

(17) Since we are using binary bit strings (0’s and 1’s), in order to
represent 20 amino acids, we need 25 (i.e., 32) bits. Some of the 20 amino
acids are represented by more then one string. The choice of this bit
degeneracy was selected at random, but once selected, it was kept constant
through out the experiment.

(18) Where X represents one amino acid present at a time and the
numbering is used for the sake of discussion only.

(19) (a) Ator, M.; Beigel, S.; Dankanich, T.; Echols, M.; Gainor, J.;
Gilliam, C.; Gordon, T.; Koch, D.; Kruse, L.; Morgan, B.; Olsen, R.;
Siahaan, T.; Singh, J.; Whipple, D.Peptides: Chemistry Structure and
Biology; Proceedings of the 13th American Peptide Symposium; Hodges,
R., Smith, J., Eds.; 1994; pp 1012-1016. (b) We have previously described
the reasons and the validation for use of CPG as a solid support, see ref 10
above for details.

(20) (a) We have incorporated an alanine residue at the N-terminus of
all sequences identified by GA before we tag the N-terminus with the
fluorescent markersCOP. This was carried out to distance the marker group
further away from the active site of a protease. (b) Gainor, J. A.; Gordon,
T. D.; Morgan, B. A.Peptides: Chemistry Structure and Biology; Proceed-
ings of the 13th American Peptide Symposium; Hodges, R., Smith, J., Eds.;
1994; pp 989-991.

(21) The synthesis outlined here does not involve any “mix & split”
strategy, and therefore, each sample/tube represents a single sequence.

(22) The weighing robot was programmed such that any sample which
falls outside this weight range was reweighed. Each rack of assay also
contained a negative control, hexa-D-alanyl, and GPLAMF as a positive
control sample. These samples are used as a guide to decide the validity
of every assay and are used as an integral part of biological evaluation.

(23) (a) Chowdhury, S. K.; Vavra, K. J.; Brake, P. G.; Banks, T.; Falvo,
J.; Wahl, R.; Eshraghi, J.; Gonyea, G.; Chait, B. T.; Vestal, C. H.Rapid
Commun.Mass Spectrum. 1995, 9 (7), 563-569. (b) Brownell, J.; Earley,
W.; Kunec, E.; Morgan, B. A.; Olyslager, B.; Wahl, R. C.; Houck, D. R.
Arch. Biochem. Biophys. 1994, 314, 120-125.

(24) (a) Eshraghi, J.; Chowdhury, S. K.Anal. Chem. 1993, 65, 3528-
3533. (b) Following is a typical sample procedure for obtaining data from
LC/MS: The procedure adopted for on-line separation using a microcapillary
HPLC system coupled to an electrospray ionization (ESI) mass spectrometer
has been described in details in the above reference. Briefly, the gradient
mobile phases (0.1% aqueous trifluoroacetic acid (TFA) and 0.1% TFA in
acetonitrile) from the Waters 600 HPLC pump (200µL/min) is split with
a ratio of 100:1. The smaller fraction (2µL/min) passes through a 0.5µL
injection loop followed by a microcapillary column (VYDAC C-18, 300
Å; 300 mm id× 15 cm) to first to the microdetection cell of a Spectroflow
UV detector and then to the electrospray ionization chamber of a Finnigan
TSQ 700 mass spectrometer (Finnigan Mat, San Jose, CA), while the larger
fraction goes to the waste. The UV detector and the ESI mass spectrometer
are operated in series so that measurement of the UV chromatogram and
the mass spectra can be performed on the same effluents. A sheath liquid
(2-methoxyethanol) was added to the LC effluents prior to electrospray
ionization at a flow rate of 2µL/min to assist the electrospray ionization.
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Results and Discussion

Identification of Active Sampless“Hits”. Stromelysin
(mSl-t) was used as the protease of choice. The recombinant
version of mSl-t utilized in these experiments has some
autocatalytic activity. This could further complicate the raw
biological data (the observed fluorescence) as a number of assays
were performed over a period of time. We have used a set of
controls as references to validate a given screening run. The
peptide GPLAMF is employed as the positive reference peptide,
and all the data shown are normalized versus this reference
sample.25

The negative value26 of the observed fluorescence of given
samples27 of generation Gen(i) is used as input for optimization
in the GA to provide sequences for the subsequent generation
Gen(i+1). On the basis of the paradigm described in Scheme 1,
one way to evaluate the usefulness of GA for lead selection
and lead optimizations would be to demonstrate that (i) samples
with greater activity are observed in the later generations and
(ii) new “actives” are identified in later generations which are
not present in earlier generations. The latter would provide an
indication of the ability and effectiveness of the GA technique
to explore diversity space. A plot of the average fluorescence28

(activity) versus generation is shown in Figure 1. [The small
number of generations reported in this paper are the result of
the untimely closure of the research facilities where this work
was being carried out. However, the authors believe that the
method was so compellingly efficient and the findings so
important to the chemical community at large that they have
decided to make this report.] One can clearly see that the trend
to greater activity, even in this relatively small number of
generations evaluated, is evident. Not only did the average
activity per generation improve (as highlighted in Figure 1) but
each generation also identifiednew sequences with greater
activity compared to the previous generations (see Figure 2).
The graphical representation of the data in Figure 2 provides

evidence for GA’s capability to explore diversity space. It
should be clear that the greatest impact on diversity exploration
is due to “crossover” terms in these algorithms, since the
mutation rate of 1 in 1000 bits is not an effective mode to
increase diversity. Examination of sequences for the five
generations also showed that, even though we constrained X2

to prolineonly for the initial generation of “random” sequences,
we did not see any variance at the X2 position throughout these
limited number of generations. In the future, a better approach
to provide such constraints would be to use a higher bias for a
given amino acid rather then an absolute constraint as utilized
for the current experiment. This approach would be analogous
to the protocol used in phage display based experiments.29

Multiple assays per sample at the early screening stage are
not relevant from a high-throughput screening point of view. It
should be emphasized that we have carried out a single assay
per sample and the observed (raw) fluorescence has been used

(25) The observed (raw) fluorescence values were used as a fitness
function. The normalized data have been used here to compare various
generations. The data were normalized such that the activity of each positive
control sample represents 10 000 fluorescence units.

(26) The genetic algorithm we have used here is very similar to the one
utilized previously for computational experiments related to conformational
analysis problems, where the GA’s goal was to identify conformations with
lower energy (i.e., the fitness function was used to compute energy);
therefore, for this experiment, we have used the converse, i.e. negative,
value as a fitness function to optimize activity.

(27) However, in a given generation (except of course the initial
“random” generation), there are invariably some sequences which are already
present in earlier generation(s). We have decided to re-test these samples
for the number of occurrences asked for by GA. These multiple results
take into account the variance in the biological assays. In addition, these
results also provide an indication of the robustness and reliability of our
assay.

(28) Average fluorescence is simply the sum of the normalized fluores-
cence value for all samples divided by 60 (total number of samplesNpop in
any generation).

(29) For example, a 60-70% probability for occurrence of a given group
should provide a better method to introduce constrains. This is analogous
to the approach used for phage display based experimental design for
introducing constrains at a given position(s) by using nucleotides NNN,
where N represents 70:10:10:10 proportions of different nucleotide mono-
mers. For a representative reference on phage display approach to introduce
constrains, see: Schatz, P. J.Biotechnology1993, 11, 1138-143.

(30) It is interesting to note that the sequences UPUAMS and UPUANS
(Table 2, lines 16 and 19, respectively) are processed very differently by
stromelysin. The sequence containing methionine (M) was cleaved at a
single site, between alanine (A) and methionine (M). This cleavage pattern
is consistent with the other samples for which the cleavage site was
determined such that in all of these sequences proline occupies the P3 pocket
of the enzyme (see legend in Figure 2 for information on representative
samples). However, the sequence containing asparagine (N) was cleaved
at two distinct sites: P-U and A-N in a ratio of 3:1, respectively, where
the major site of cleavage places the proline residue at the P1 site.

Scheme 3.Protease Assay Format and Strategy for
Identification of Actives

Figure 1. Performance evaluation of GA-based lead identification plot
of average activity (fluorescence) versus GA-based generations. Solid
lines represent actual experimental data, the dotted line shows a
projected plot if one assumes that Gen-10 represents a termination point,
each sample of Gen-10 being a good substrate with∼20% substrate
processing.

Figure 2. Most active sequence from each generation. The site of
processing by stromelysin is indicated by a hyphen for sequences listed.
Relative activity is plotted with best sequence for G1) 1.0. Two
samples are shown for G4. Even though the most active samples for
G4 and G3 have identical sequences, the next most active sample for
G4 represents a different sequence and very distinct P2 and P1′ residues
than observed for G3.30

1672 J. Am. Chem. Soc., Vol. 118, No. 7, 1996 Singh et al.



as a fitness function to drive GA-based optimization. This
assures that every sample receives identical biological evalua-
tion. It should also be stressed that the Gen(i+1) sequences are
directly derived from the biological data obtained for the
preceding generation, Gen(i). The absolute activity for a given
sequence from run to run may vary, but the data within a given
generation are reproducible (see Table 1). For example, sample
QPQYLK has some variance in activity between different
generations, but within any given generation, the activity for
this sample is reproducible.
It is also important to realize that as part of the normal GA

process a given sequence is identified several times. We had
made a fundamental decision at the start of the GA-driven
experiment to conduct biological evaluations for that sample
the equal number of times as asked for by the GA and use the
individual biological responses as a fitness function for the
subsequent cycle. This we believed a way to handle the inherent
variance in any biological evaluation.
A summary of results for selected samples31 from five

generations of the genetic algorithms (GA) based hexapeptides
is represented graphically in Figure 3. The data in Figure 3
are arranged such that the location of a bar represents the identity
of a particular sample (a specific sequence) and the patterns in
the bars represent different generations. For example, the panel
for the first generation highlights three distinct active peptides.
The panel for the second generation shows the three samples
which were present in generation one and four new active
samples. Data for generation five clearly show severalnew
sequences (shown by solid bars) not identified in the previous
four generations. In addition, this panel (for Gen-5) also shows
existing sequences highlighted by their respective generation
pattern codes. Sequences in the order of their occurrence in
Figure 3, along with the number of their multiple occurrences
in the particular generation, are shown in Table 2.
We have used a single, simple fitness functionsenhancement

of the fluorescence value.32 One may choose to incorporate a
number of interdependent parameters or molecular properties
as a fitness function, or one may employ penalty functions for
some variables as a part of the fitness function paradigm. For
example, one may construct complex fitness functions incor-
porating the molecular weight of the hexapeptide, its selectivity
for the target enzyme over the related enzymes, its degree of
overall charge, solubility in water, etc. The only requirement
of this overall fitness function is that a value for each member
can be determined. Many optimization strategies are inap-
plicable to the SAR problem because they require a continuous,

mathematically definable fitness function to which analytic
strategies may be applied. This is not the case with GA, which
readily optimizes discontinuous fitness functions by its very
nature. The method also readily accommodates variability in
the fitness value (as seen here by using the raw fluorescence
data). This is an essential part of SAR work and is also not
readily accommodated by other methods of optimization. In
fact, it is stated that the GA’s succeed best where the fitness
functions are highly complex, discontinuous, and “noisy”.7aGA
could easily be used to optimize a number of parameters
simultaneously as it is known to provide solution to the kind of
problem not suited to other methods. The combinatorial
chemistry based diversity assessment/solution is a such a
problem.
Identification of Selective Sampless“Unique” Hits. Fi-

nally, we emphasize that the entire process of iteratively
optimizing some SAR has an inherent potential advantage over
that of making large libraries before screening them. That
advantage is one of “data digestion”. In other words, the project
team has an opportunity to assess results from one generation
of compounds and to “spin-off” other avenues of investigation
while the optimization is proceeding by the GA technique. We
have found this to offer a great advantage in our hands, and an
example of such a “spin-off” bonus is presented below.
Utilization of the samples from generation one for determi-

nation of stromelysin-selective substrate sequences, described
below, is an illustration of the flexibility of this approach.
However, it is important to emphasize that this activitymust
proceed in parallel with the GA optimization and not be used
to influence its convergence. Thus oneshould notchange the
variables for the GA experiment on the basis of the outcome of
information from a given generation. The goal in the stromel-
ysin project was not only to identify good substrates but also
to identify stromelysin-selective substrates. The substrate
selectivity information would be subsequently translated into a
selective inhibitor. In view of this objective, we have also
assayed the initial set (generation 1) vs collagenase (mCl-t).
The results for the collagenase vs stromelysin assays are shown
below in Figure 4. The site of processing, in the sequences
highlighted, is indicated by a hyphen. However, translation of
these subtrates to a known class of matrix metalloprotease
inhibitors33 would only involve the P1′ and P2′ portion of the
information. It is known that the P1′ residue imparts a greater
selectivity among matrix metalloproteases. We have identified
a sequence, GPST-YT, which is selectively processed by
stromelysin, as shown in Figure 5. This processing between
Thr and Tyr represents a unique selectivity between these two
metalloproteases. Therefore, we used this stromelysin-selective
substrate34 and prepared a focused set of sequences which
explores variations at the Y (Tyr) position (Chart 1) in an
independent study. The groups were selected to evaluate a

(31) For sake of clarity only selected samples are shown. A complete
list of sequences and their normalized data is available as supporting
information.

(32) Since we have determined the site of processing only for a handful
of samples in any given GA-based generations, we have not used site of
cleavages as an input for obtaining the Gen(i+1) set in this study.

Table 1. Representative Fluorescence Values (( Variance)a

sequence Gen-1 Gen-2 Gen-3 Gen-4 Gen-5

APUELG 12116b 19660( 390 -c - -
APAELG - 23508 14642( 502 14273( 831 16409( 1177
GPSTYT 9547 24138( 627 13465( 1139 12823( 145 19359( 40
MPGLUS - 15194 12933( 318 - -
MPELUS - - 14133 13170( 745 -
MPQYUS - - - 21844 28091( 309
QPQYLK 13659 15708( 477 18431( 3326 18769( 318 25434( 1046
TPHAQV - - 29237 23385( 1193 34712( 1106
UPUANS - - 18079 15543( 590 21240( 253

a The fluorescence values shown have not been corrected for the actual weight of the sample used in the assay. As described in the Biological
Assays section, the weights of the samples were 4.0( 0.3 mg, which may account for up to(10% of the variability in the fluorescence value.
Results were normalized to the fluorescence value of the standard GPLAMF sequence, as described in the text.b The single value indicates the first
occurrence of this sequence.cDashes indicate absence of this sequence in the given generation.
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variety of electronic and steric properties for their effect on
relative hydrolysis of the substrates and thus their relative

importance on overall binding energy in the active site of
stromelysin. These immobilized samples were synthesized and
assayed versus collagenase and stromelysin. The groups chosen
are shown in Chart 1, and the assay results are shown in Figure
5. All of these samples demonstrate selective processing by
stromelysin (mSl-t), as none of these showed any processing
by collagenase (mCl-t). For three samples, shaded differently
and marked with relative activity vs reference sample Tyr, we
have confirmed by amino acid and LC/MS analyses35 that the
identity of the species in post-enzymology supernatant is COP-

(33) Various classes of MMP inhibitors have been reported in the
literature. (a) For hydroxamate series, see: (i) Singh, J.; Conzentino, P.;
Cundy, K.; Gainor, J.; Gordon, T.; Johnson, J.; Morgan, B.; Whipple, D.;
Gilliam, C.; Schneider, E.; Wahl, R.BioMed. Chem. Lett. 1995, 5, 537-
542. (ii) Johnson, W. H.; Roberts, N. A.; Borkakoti, N. J.Enzyme Inhib.
1987, 2, 1-22. (b) ForN-carboxyalkyl series, see: Chapman, K. T.; Kopka,
I. E.; Durette, P. L.; Esser, C. K.; Lanza, T. J.; Izquierdo-Martin, M.;
Neidzwiecki, L.; Change, B.; Harrison, R. K.; Kuo, D. W.; Lin, T.; Stein,
R. L. J. Med. Chem. 1993, 36, 4293-4301. (c) For phosphonate series,
see: (i) Bartlett, P. A.; Marlowe, C. K.Biochemistry1987, 26, 8553. (ii)
Bird, J.; DeMallo, R. C.; Harper, G. P.; Hunter, D. J.; Karran, E. H.;
Maekwell, R. E.; Miles-William, A. J.; Rahman, S. S.; Ward, R. W.J.
Med. Chem. 1994, 37, 158-169.

(34) The sequence: GPST-YT, chosen for P1′ variations was observed
in all five generations. This sequence happens to be processed selectively
by stromelysin.

Figure 3. Data are arranged such that the location of a bar represents the identity of a particular sample (a specific sequence), and the pattern of
the bar signifies the generation in which the sequence was discovered. The positive control sample, GPLAMF, used to normalize data for all
generations is shown by the white bar in each panel. A listing of the sequences (in the order of their occurrence) in each generation (panel) is shown
in Table 2.
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AGPST-OH. These data confirm that these substrates are
processed by stromelysin betweenT (Thr) andX residues. This
implies that the groups shown in Figure 5 interact at the S1′
site of the stromelysin active site. Thus, these data also provide
some additional SAR type information. For example, the data
show a preference of oxygen vs sulfur (by comparison of Ser-
(Bn) vs Cys(Bn)) and indicateâ-branching to be deleterious
(comparison of Ser(Bn) and Thr(Bn)). In conjunction with a
3D model of stromelysin, we have been able to rationalize this

data on the basis of the steric and electronic effects and have
suggested additional novel P1′ groups.36,37

Conclusions

We have provided the first example to our knowledge for
utilization of raw biological data to guide a genetic algorithm
driven chemical synthesis. These algorithms further facilitate
the process of lead discovery/optimization by reducing user bias.
Exploration of stromelysin-selective P1′ residue information
provides an example of how, based on the assay results from
any given screen, one could obtain focused information by this
approach. Employment of GA-based optimization would
require synthesis of a small fraction38 of the combinatorial
population. This approach provides an alternative strategy to
effectively explore diversity space without the construction and
assay of large libraries to identify lead candidate(s). Genetic
algorithms should provide a powerful tool to help focus drug
discovery. We hope, that this first example of the demonstration
of GA as a tool to guide chemical synthesis based problems
would provide an incentive for further exploration of these tools

(35) The mass spectra of the two samples containing Ser(OBn) and hPhe
residues were essentially identical except for the ratio of the major peaks
to be roughly 2.7:1, which happens to be the relative activity of these two
samples. LC/MS of a sample containing Tyr also gave a similar spectra
and identical (M+ H)+ ions.

(36) Singh, J.; Ghose, A. Unpublished results.
(37) Translation of the stromelysin selective P1′ and P2′ information to

a series of inhibitors using solid phase based combinatorial synthesis is
obviously the next logical step. It is feasible to involve GA to facilitate in
rapid resolution to the selective inhibitor identification/optimization problem.

Table 2. Summary of Selecteda Data Highlighting Uniqueb and Existing Sequences for Each Generation, as Identified by GA

no. Gen-1 Gen-2 Gen-3 Gen-4 Gen-5

1 APUELG APUELG (5)c - - -
2 - APAELG APAELG (5) APAELG (6) APAELG (4)
3 - - - - APQYUS
4 - - - - APYNLG
5 - - - MPQYUS MPQYUS (4)
6 GPSTYT GPSTYT (4) GPSTYT (7) GPSTYT (3) GPSTYT (2)
7 - - - - MPQYLK
8 - - - - QPHAQV
9 - MPGLUS MPGLUS (3) - -
10 - - MPELUS MPELUS (5) -
11 QPQYLK QPQYLK (7) QPQYLK (4) QPQYLK (6) QPQYLK (2)
12 - - - - TPHAQS
13 - - - - UPUAMT
14 - SPYMEA - - -
15 - - TPHAQV TPHAQV (7) TPHAQV (6)
16 - - - UPUAMS -
17 - - - - UPUAYT
18 - TPLKSV TPLKSV (2) - -
19 - - UPUANS UPUANS (5) UPUANS (2)

a Sequences shown above are in the order of their occurrence in Figure 4 for each generation. Dashes indicate absence of that particular sequence
for the given generation.bUnique sequences in each generation are shown in bold.cNumber of times this sequence repeated in this generation.

Figure 4. Assay results for collagenase (mCl-t) and stromelysin
(mSl-t) for Gen-1 samples.

Figure 5. Assay results of samples COP-AGPST “X” T-(Acp)5-bAla-
AMP-CPG. All of these samples showed processing by stromelysin
only, and the data are shown above. Asterisks (* ) indicate that these
samples were confirmed to show a single site of cleavage as confirmed
by Edman sequencing of the postenzymology solid (glass-bound)
sample and by amino acid analysis and LC/MS of the supernatant. Two
columns are shaded differently to highlight the groups which show
activity greater than that of the reference, Tyr.

Chart 1. Variants Examined in the Immobilized Peptides
[COP-AGPST′′X′′T-(Acp)5-âAla-AMP-CPG] as Potential
Substrates for Stromelysin
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for increasingly important chemical diversity based problems.
The use of GA could easily be tailored to small molecule based
diversity solutions.39,40 This strategy/approach should be equally
applicable to both lead identification and (or perhaps more suited
for) lead optimization processes.

Note Added in Proof: Subsequent to the submission of this
manuscript, a report describing the use of a genetic algorithm

for lead generation has appeared (Weber et al.Angew. Chem.,
Int. Ed. Engl. 1995, 34, 2280-2282).
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(38) Computationally it has been shown that, in general, GA should
converge in about 10-15 generations (see ref 8a). This would mean that
one would have to synthesize a total of∼600 samples, i.e.<0.002% of the
combinatorial population of 3 200 000. One could easily synthesize these
relatively small numbers of compounds as individual compounds (via
parallel synthesis) and would not have to resort to preparing mixtures. This
in turn would obviate considerations of alternate decoding strategies to
identify active compounds.

(39) The version of the GA described here is applicable to an oligomeric
based template: An-Bm-Cp-Dq or a non-oligomeric template where An, Bm,
Cp, and Dq represent pendants on a core scaffold or a hybrid of these. Here,
n, m, p, andq represent number of variables at the respective positions.
These templates may represent peptidomimetic, peptoid, or small molecule
based templates for lead selection/optimization either as protease inhibitors
or for receptor antagonists.

(40) The templates recently described by Martin et al. (ref 3 above) and
Kick and Ellman (Kick, E. K.; Ellman, J. A.J.Med.Chem. 1995, 38, 1427-
1430) are the two relevant examples to which the current version of the
genetic algorithms may be potentially applied for the identification/
optimization of lead compounds, respectively.
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